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Since we astronomers are priests of the highest God in regard to the book
of nature, it benefits us to be thoughtful, not of the glory of our minds, but
rather, above all else, of the glory of God.

Johannes Kepler



Preface

Over the years, people have become more and more accustomed to the
field of Astronomy. But not too long ago, it was a subject approached only
by the nobility. But how did Astronomy become so mainstream? Let us first
take a step back and ask what Astronomy even is and how it came to be
what we know it is today.

Not to be confused nor united with the practices of Astrology (as it was
until the 18th century), Astronomy is the oldest of all natural sciences, with
roots in antiquity. In the earliest cultures, people identified celestial bodies
as the Moon and the Sun with deities and related these objects and their
movements to certain phenomena.

The Ancient Greeks were the first to develop astronomy as a branch
of mathematics and treat it with rigour. One of the most important as-
tronomers of the time was a man named Ptolemy. He catalogued a total
of forty-eight constellations (known today as the Ptolemaic constellations),
relating the figures he identified with mythological creatures and deities. In
addition to that, he was the first to develop a model to predict the movement
of the stars, the so-called Ptolemaic system. The Indians, Middle-Eastern,
Mesoamericans and Chinese also independently made many observations and
wrote down what they saw, with significant contributions to the modern cat-
alogue of stars and constellations.

Throughout the Middle Ages, the subject was only pursued by select
individuals and taught alongside Astrology in the earliest universities. In
1543, a polish astronomer named Nicolaus Copernicus published an article
entitled De revolutionibus corpum coelestium, in which he proposed a new
theoretical model, the so-called heliocentric model. It was the first out of
many revolutionary ideas. The further discoveries and research of Galileo
Galilei, Tycho Brahe and Isaac Newton brought forth upon the world a new
field of study: Astrophysics.

Together with the development of Mathematics and Science, Astronomy
eventually broke apart from the practices of Astrology in the 18th century,
being treated as an area of Physics. Throughout the 19th century, people



have become aware that the picture of the Universe they knew had flaws that
could not be explained. That was until a man named Albert Einstein came
in 1905 and built upon Maxwell’s Ideas. He came up with the Theory of
Special Relativity, which poked holes in Newton’s theory. Its only flaw was
the lack of an explanation for Gravity. However, Einstein would publish an
article on the Theory of General Relativity, which completely revolutionized
our perception of the Universe.

Further observations by the likes of Hubble and the Space Race brought
mankind closer to space than ever before. New research in computers and
precision engineering got us to where we are now: searching, theorising,
testing and reaching out to the Universe. How much have we achieved?
Only 5% of the entire Cosmos is known to us. The rest is out there, waiting
to be discovered.

Author’s Message to the Readers

So what is the purpose of this book? It is nothing but a guide. A quick
guide to where we are now and a learning tool for those who wish to find out
more about what happens beyond our reach and who wish to pursue this field
of study. For those of you who are still students, it aims to prepare you for
participating in the Olympiad of Astronomy and Astrophysics, providing the
necessary mathematical and scientific apparatus to make astronomers and
astrophysicists out of you. I can only thank you for considering my effort was
worth your time and congratulate you all for having this wonderful passion.

However, this is NOT a beginner’s guide. In order to fully grasp the
contents, one ought to master high school Mathematics and Physics. For
further questions, I am open to conversations via e-mail, under the following
address:

mihai dragomir05@yahoo.com
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Chapter 1

Mathematical Interlude

1.1 Spherical Trigonometry

Definition 1. Let OXY Z be a scalene trihedron. If O is the center of
a sphere S, the trihedron’s intersections with the surface of the sphere are
three arches which meet two at each vertex, thus creating a spherical triangle
on the surface of S (Fig. 1.1).

Figure 1.1: Image of the spherical triangle ∆ABC

As a convention, we shall note the angles with uppercase letters and the
arches with lowercase letters.

Proposition. For a spherical triangle ∆ABC, the following inequalities

9



10 CHAPTER 1. MATHEMATICAL INTERLUDE

are true: {
π < A+B + C < 3π

a+ b+ c < 2π
(1.1)

Proposition. For a spherical triangle ∆ABC, we call the semi-perimeter
and excess (noted as p and ε, respectively), the magnitudes satisfying the
equations {

2p = a+ b+ c

2ε = A+B + C − π
(1.2)

Theorem. Spherical Laws of Sines and Cosines. Let ∆ABC be a
spherical triangle on a sphere S. The following properties are satisfied:

i) cos a = cos b cos c+ sin b sin c cosA - Law of Cosines for Arches

ii) cosA = − cosB cosC + sinB sinC cos a - Law of Cosines for Angles

iii) sin a
sinA

= sin b
sinB

= sin c
sinC

- Law of Sines

Proof. i)
The trick used is expressing a dot product of two unit vectors. Considering

that the properties of a spherical triangle are invariant to any scaling or
rotation, we will rearrange the triangle in the following manner (Fig. 1.2):

� the sphere will have a unit radius;

� A will be in the North Pole of the sphere;

� the arch AB will be in the plane XOZ of a three-dimensional Cartesian
frame centered in the center of the sphere.

It is useful now to establish a convention regarding vector notation.
Throughout this book, usual vectors will be noted using bold letters (e.g.

F for a force), except where it is impossible (e.g. ω⃗, x,
−→
OB). Unit vectors

will be noted with a hat (e.g. ı̂). We shall now consider the two unit vectors
−→
OB and

−→
OC. Their coordinates in the frame OXY Z are:{−→

OB = (sin c, 0, cos c)
−→
OC = (cosA sin b, sinA sin b, cos b)

⇒
−→
OB ·

−→
OC = sin c sin b cosA+ cos c cos b

On the other hand, the dot product of the two unit vectors can be written
as:

⇒
−→
OB ·

−→
OC = cos a
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Figure 1.2: The rearranged triangle

⇒ cos a = cos b cos c+ sin b sin c cosA q.e.d.

The proof for ii) will be left as an exercise for the reader. We apply
identity i) to the polar triangle and use the relationship between the two
triangles. Next, we will prove iii).

For this, we will use the fact that sin2A = 1− cos2A. The expression for
cosA follows from i) as

cosA =
cos a− cos b cos c

sin b sin c

Substituting this, we get

sin2A =
sin2 b sin2 c− (cos a− cos b cos c)2

sin2 b sin2 c

⇒ sin a

sinA
=

sin a sin b sin c√
sin2 b sin2 c− (cos a− cos b cos c)2

,

which is invariant to circular permutations of a, b and c. Thus, we get

sin a

sinA
=

sin b

sinB
=

sin c

sinC
q.e.d.
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Definition 2. Let ∆ABC be a spherical triangle on a sphere S, generated
by a trihedron OXY Z (Fig. 1.3). The triangle ∆A′B′C ′ generated by the
trihedronOX ′Y ′Z ′ on the same sphere S is called the polar triangle of ∆ABC
if the following are true: 

OX ′⊥Y OZ
OY ′⊥XOZ
OZ ′⊥XOY

(1.3)

Figure 1.3: Image of ∆ABC and its polar triangle ∆A′B′C ′

Theorem. Relationship with the Polar Triangle. Let ∆ABC be
a spherical triangle and ∆A′B′C ′ its polar triangle. The following equation
applies:

A+ a′ = B + b′ = C + c′ = π (1.4)

All of the results above apply to the polar triangle as well.
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1.2 Conic Sections

Definition. A conic section is a curve obtained from the intersection of
the surface of a cone with a plane (Fig. 1.4). Depending on the angle of the
plane, there are three types of conic sections: ellipse, parabola, hyperbola.
The circle is a special case of the ellipse, though it will be treated separately
here due to its orbital properties.

Figure 1.4: 3D view of the four conic sections
https://www.geogebra.org/resource/x4hgF2Fd/HGmh21K7Wb8w3mxc/

material-x4hgF2Fd.png

The general equation of a conic in polar coordinates is

r(θ) =
a(1− e2)

1 + e cos θ
(1.5)

The eccentricity e defines the type of curve and will be addressed in each
particular case.

1.2.1 Circle

Definition. A circle is the locus of all points equidistant from a single
point. The point is called the center, while the distance is called the radius.
It is an ellipse with the eccentricity e = 0.

If r is the radius of a circle centered in the point C(a, b), the points lying
on the circle obey the equation:√

(x− a)2 + (y − b)2 = r (1.6)

If the circle is centered in the origin, i.e. a = b = 0, the equation becomes√
x2 + y2 = r (1.7)
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If one were to plot equation (1.5) in a Cartesian plane, it would look like
this:

Figure 1.5: Circle Representation

The orbital properties of the circle, together with the other three cases,
will be discussed later, when the subject of Orbital Mechanics is put forward.
The planets orbit the Sun in elliptical trajectories, but the eccentricities are
so small that a circle is a very good approximation. The speed along a
circular trajectory is constant.
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1.2.2 Ellipse

Definition. An ellipse is the locus of all points whose sum of the dis-
tances to the two focal points is constant. It has the following form in a
Cartesian plane:

Figure 1.6: Ellipse Representation

The following notations were introduced:

� a - the semi-major axis ;

� b - the semi-minor axis ;

� c - the focal distance;

� F and F ′ - the focal points ;

For an ellipse centered in the point C(x0, y0), the equation in Cartesian co-
ordinates is

(x− x0)
2

a2
+

(y − y0)
2

b2
= 1, (1.8)

which for x0 = y0 = 0 becomes

x2

a2
+
y2

b2
= 1 (1.9)
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The ellipse satisfies the equations:


c = ae

a2 = b2 + c2 ⇒ b = a
√
1− e2

M is on the ellipse ⇔MF +MF ′ = 2a = const.

e ∈ (0, 1)

1.2.3 Parabola

Definition. A parabola is the locus of all points equidistant from a fixed
line (called the directrix ) and a fixed point (called the focus). The eccentricity
is e = 1 and the equation in Cartesian form is

y2 − 2px = 0, (1.10)

where p is the parameter of the parabola. The representation is

Figure 1.7: Parabola Representation
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1.2.4 Hyperbola

Definition 1. A hyperbola is the locus of all points whose absolute
value of the difference of the distances to the focal points is constant. The
eccentricity e > 1 and the equation in Cartesian coordinates for a hyperbola
centered in C(x0, y0) is

(x− x0)
2

a2
− (y − y0)

2

b2
= 1 (1.11)

Centering the hyperbola in the origin transforms the equation into

x2

a2
− y2

b2
= 1 (1.12)

It has the following form in Cartesian coordinates:

Figure 1.8: Hyperbola Representation

Given the Cartesian representation, it is a trivial proof (and it will be
left as an exercise to the reader) that the asymptotes are of equation

y = ± b

a
x (1.13)
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Definition 2. Given a hyperbola of equation (1.12), its so-called conju-
gate hyperbola is defined as the hyperbola of equation

x2

a2
− y2

b2
= −1 (1.14)

It intersects the Y axis in the points (0, b) and (0,−b) and it can be easily
shown that it has the same asymptotes as the so-called true hyperbola:

Figure 1.9: True Hyperbola in Black, Conjugate Hyperbola in Turqoise

For a=b, the hyperbola is called rectangular and it obeys the expression:

x2 − y2 = a2 (1.15)

and has asymptotes

y = ±x (1.16)

With this, the part dedicated to conic sections ends. Next, we shall
explore the world of Real Analysis, which is an indispensable tool for Physics
and Astronomy.
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1.3 Real Analysis

This chapter is dedicated to introducing general notions which will be
useful not only to Astronomy, but to most branches of Physics. After a short
introduction into vector spaces, we shall present the most important results
in vector calculus, differential and integral calculus on Banach spaces, while
also introducing the apparatus of differential forms in order to bring these
results into the modern context.

1.3.1 Sequences and Series of Real Numbers

Definition 1. A sequence of real numbers (xn)n is called convergent to
x0 ∈ R if

∀ε > 0, ∃Nε ∈ N∗ such that ∀n > Nε, |xn − x0| < ε (1.17)

Definition 2. A sequence of real numbers (xn)n is called fundamental
or Cauchy if

∀ε > 0, ∃Nε ∈ N∗ such that ∀m,n > Nε, |xn − xm| < ε (1.18)

Theorem. Cauchy’s General Convergence Criterion. A sequence
of real numbers (xn)n is convergent if and only if it is fundamental. On this
premise, the next result holds true.

Theorem. Every real number is the limit of a (fundamental) sequence
of rational numbers, i.e. Q is dense in R.

This statement will be considered again when the topic of metric spaces
is put forward, since it affirms that R, together with the Euclidean norm,
form a Banach space.

Definition 3. Let (xk)k be a sequence of real numbers. The sequence of
partial sums is defined as follows:

Sn =
n∑

k=1

xk (1.19)
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If the limit

lim
n→∞

Sn
not
= S

exists and is finite, then we say that the series

∞∑
k=1

xk = lim
n→∞

n∑
k=1

xk (1.20)

is convergent and
∞∑
k=1

xk = S. (1.21)

On the contrary, we say that the series in divergent.
Theorem. Cauchy’s General Convergence Criterion. A series is

convergent if and only if the sequence of partial sums is a Cauchy sequence,
i.e.

∀ε > 0, ∃Nε ∈ N such that ∀m,n ∈ N, n > Nε,

|xn+1 + xn+2 + ...+ xn+m| < ε (1.22)

Proposition. If a series is convergent, then the limit of the general term
is 0. Equivalently, if the limit of the general term is not 0, then the series is
divergent, i.e.

∞∑
k=1

xk <∞ ⇒ lim
k→∞

xk = 0 and

lim
k→∞

xk ̸= 0 ⇒
∞∑
k=1

xk = ∞. (1.23)

Convergence Criteria. For the following statements we shall assume
that ∑

k≥1

ak and
∑
k≥1

bk (1.24)

are two series of positive terms.
First Criterion:{

ak ≤ bk,∀k∑
k≥1 bk <∞

⇒
∑
k≥1

ak <∞ (1.25)


